Convergence between Categorical Representations of Reeb Space and Mapper

نویسندگان

  • Elizabeth Munch
  • Bei Wang
چکیده

The Reeb space, which generalizes the notion of a Reeb graph, is one of the few tools in topological data analysis and visualization suitable for the study of multivariate scientific datasets. First introduced by Edelsbrunner et al., it compresses the components of the level sets of a multivariate mapping and obtains a summary representation of their relationships. A related construction called mapper, and a special case of the mapper construction called the Joint Contour Net have been shown to be effective in visual analytics. Mapper and JCN are intuitively regarded as discrete approximations of the Reeb space, however without formal proofs or approximation guarantees. An open question has been proposed by Dey et al. as to whether the mapper construction converges to the Reeb space in the limit. In this paper, we are interested in developing the theoretical understanding of the relationship between the Reeb space and its discrete approximations to support its use in practical data analysis. Using tools from category theory, we formally prove the convergence between the Reeb space and mapper in terms of an interleaving distance between their categorical representations. Given a sequence of refined discretizations, we prove that these approximations converge to the Reeb space in the interleaving distance; this also helps to quantify the approximation quality of the discretization at a fixed resolution. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Analysis and Parameter Selection for Mapper

In this article, we study the question of the statistical convergence of the 1-dimensional Mapper to its continuous analogue, the Reeb graph. We show that the Mapper is an optimal estimator of the Reeb graph, which gives, as a byproduct, a method to automatically tune its parameters and compute confidence regions on its topological features, such as its loops and flares. This allows to circumve...

متن کامل

Structure and Stability of the 1-Dimensional Mapper

Given a continuous function f : X → R and a cover I of its image by intervals, the Mapper is the nerve of a refinement of the pullback cover f−1(I). Despite its success in applications, little is known about the structure and stability of this construction from a theoretical point of view. As a pixelized version of the Reeb graph of f , it is expected to capture a subset of its features (branch...

متن کامل

Reeb Space Approximation with Guarantees

The Reeb space, which generalizes the notion of a Reeb graph, is one of the few tools in topological data analysis and visualization suitable for the study of multivariate scientific datasets. First introduced by Edelsbrunner et al. [3], the Reeb space of a multivariate mapping f : X→ R parameterizes the set of components of preimages of points in R. In this paper, we formally prove the converg...

متن کامل

ON STRATIFIED LATTICE-VALUED CONVERGENCE SPACES

In this paper we provide a common framework for different stratified $LM$-convergence spaces introduced recently. To this end, we slightly alter the definition of a stratified $LMN$-convergence tower space. We briefly discuss the categorical properties and show that the category of these spaces is a Cartesian closed and extensional topological category. We also study the relationship of our cat...

متن کامل

Further study on $L$-fuzzy Q-convergence structures

In this paper, we discuss the equivalent conditions of pretopological and topological $L$-fuzzy Q-convergence structures and define $T_{0},~T_{1},~T_{2}$-separation axioms in $L$-fuzzy Q-convergence space. {Furthermore, $L$-ordered Q-convergence structure is introduced and its relation with $L$-fuzzy Q-convergence structure is studied in a categorical sense}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016